

Cannon Lake / Coffee Lake
Signing and Manifesting Guide for

Intel® ME 12.0 FW

User Guide

Revision 1.1

March 2018

Intel Confidential

2 Intel Confidential User Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT
OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN
ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR
WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must
not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

User Guide Intel Confidential 3

Contents

1 Introduction .. 6

1.1 OEM Key Manifest (OEM KM) .. 6
1.2 Goal .. 6
1.3 Pre-Requisites .. 6
1.4 Tools Used In This Document ... 7
1.5 Terminology ... 7

2 Intel® Manifest Extension Utility (Intel® MEU) .. 8

2.1 Usage .. 8
2.2 Examples ... 9

2.2.1 Generate Configuration XML Template .. 9
2.2.2 Generate Code partition XML ... 10
2.2.3 Generate Compressed and Signed Partition 10

3 OEM Component Signing High-Level... 12

3.1 OEM Key Manifest Creation .. 12
3.2 Why the OEM KM is Important? .. 13
3.3 Creation process of OEM KM ... 13

4 Manifesting and Signing OEM Components in the IFWI Image 14

4.1 Creating a Signed IFWI Image .. 14
4.2 Opt-ing out of the OEM KM... 15

5 Creating PKI Key Pairs .. 16

5.1 Introduction ... 16
5.2 Generating Key Pair for Signing .. 16
5.3 Creating the Public Key Hash: .. 16

5.3.1 Creating a Public Key Hash Using Intel® MEU 16
5.3.2 Creating Public Key Hash Manually... 17

5.4 Key Security ... 18

6 Using Intel® MEU to Manifest & Sign .. 19

6.1 Introduction ... 19
6.2 Binary Manifesting Signing Overview ... 19
6.3 Intel® MEU Configuration ... 20
6.4 Intel® MEU Binlist ... 21

6.4.1 Bin-list usage .. 22
6.5 Intel® MEU Decomposition ... 22
6.6 Intel® MEU Re-sign ... 23
6.7 Different Binary Types Supported By Intel® MEU 23

6.7.1 ISH FW .. 24
6.7.2 IUnit / aDSP.. 25
6.7.3 Secure Tokens (OEM Unlock Tokens) ... 26

7 OEM Key Manifest .. 28

7.1 Introduction ... 28
7.2 Creation of Manifest .. 28

8 Add Components to Intel® FIT ... 33

8.1 Introduction ... 33

4 Intel Confidential User Guide

8.2 Include each production signed binary ... 33
8.3 Add the OEM Key Manifest ... 33
8.4 Add the Public Key Hash for OEM Key Manifest ... 33
8.5 Change the Key Manifest ID ... 34

9 Production Signing ... 35

9.1 Introduction ... 35
9.2 Production signing high-level .. 35
9.3 Export Manifests ... 36
9.4 Manifest structures ... 36

9.4.1 Manifest Header .. 38
9.4.2 Signed Package Info Extension .. 39
9.4.3 OEM Key Manifest .. 40

9.5 Import Manifest .. 41

10 Common Bring Up Issues and Troubleshooting Table .. 43

10.1 Common Bring Up Issues and Troubleshooting Table 43

Figures

Figure 1: OEM KM Creation Process .. 12
Figure 2: Platform Chain of trust extended from Intel HW Root of Trust (ME ROM HW) 13
Figure 3. High Level Overview of Manifesting and Signing OEM Components in the IFWI Image 15
Figure 4. Schematic View of Manifesting and Signing Process .. 20
Figure 5. Intel MEU Configuration xml .. 21
Figure 6. Intel MEU list of Supported Binary Types ... 22
Figure 7. Code Partition xml .. 24
Figure 8. Code Partition Metadata xml .. 25
Figure 9. OEMUnlockToken xml ... 26
Figure 10. Default OEM Key Manifest XML ... 29
Figure 11. OEM Key Manifest with 1 key for multiple manfiests .. 30
Figure 12. OEM Key Manifest with 2 key for multiple manfiests .. 30
Figure 13. Entering OEM Key Manifest .. 33
Figure 14. Entering OEM Public Key Hash .. 34
Figure 15. Entering OEM Public Key Hash .. 34
Figure 16: Production Signing Flow for OEM FW Binaries ... 35
Figure 17: OEM KM Manifest Structure .. 37
Figure 18: Code Partition Manifest Structure .. 38

Tables

Table 2-1. Options ... 8
Table 2. Components Recognized by Intel MEU, and How Key Manifests should Handle 31
Table 3: Manifest Header .. 38
Table 4: Signed Package Info Extension ... 39
Table 5: Key Manifest Extension .. 40

User Guide Intel Confidential 5

Revision History

Revision
Number

Description Revision Date

0.5 Initial Release May 2017

0.7 Updates:

 Updated bin list image in Figure 6

 Clarified OEM KM use-case in Section 1.1

 Updated MEU tool usage per latest tool and help menu

details in Section 2.1

 Added important note about permanent impact for not

including OEM KM in section Sections 3.1 & 8.3

 Clarified steps of opt-ing out of OEM KM in Section 4.2

 General typo & clarification updates

July 2017

0.75 Updates:

 Added Table 4 & Section 9.4.2 for “Signed package Info Ext”

 Added Table 5 & Section 9.4.3 for “Key Manifest Ext”

 Corrected Figure numbers in entire document

August 2017

0.9 Updates:

 Added section 6.7.3 for Secure Tokens (OEM Unlock)

 Added details in intro and entire doc about scope including

CFL platform using CNL PCH (with ME12 FW).

August 2017

0.91 Updates:

 Source for LZMA tool

October 2017

1.0 Aligning revision number for PV December 2017

1.1 Update Figure-5 in section 6.3 – New figure includes the

removal of the default Signing Tool path.

March, 2018

Introduction

6 Intel Confidential User Guide

1 Introduction

This document gives an overview of the process of manifesting and signing OEM
components to be included in the IFWI image for Cannon Lake platforms as well as
Coffee Lake (CNL PCH) platforms using ME12 FW.

OEMs are required to add manifests to components in the IFWI images if they wish to

enable OEM Key Manifest (OEM KM) in order for ME FW to authenticate OEM
Components. OEMs are encouraged to enable OEM KM usage as it extends platform
root of trust extended by the Intel ME ROM as Intel’s HW Root of Trust.

In any of these cases, OEMs must sign all components and include an OEM Key

Manifest, as explained in this User Guide.

1.1 OEM Key Manifest (OEM KM)

The OEM KM is a key manifest containing the OEM’s public key hashes for

authenticating the OEM’s components. The OEM KM is authenticated by the ME FW
against the “OEM Public Key Hash” FPF that is provisioned during OEM/ODM
manufacturing flow. Once the OEM KM binary is authenticated, the keys contained in it
are subsequently used to authenticate various OEM components based on the key
usages enabled. The OEM KM can be used to authenticate OEM signed components

such as ISH FW, Audio FW, iUnit FW, OS kernel, and OS bootloader. There are three
main use case for the OEM KM:

1. Dedicate separate key for each OEM component team (i.e. 1 key for ISH team,
another for Audio FW, another for iUnit, etc.).

2. The key signing OEM KM cannot be revoked since its public key hash is the
“OEM Public Key Hash” in FPF HW. But the keys used inside the OEM KM can

be revoked if they are compromised allowing customers to easily push out
updates for the OEM KM by increasing SVN/VCN number of the OEM KM itself
and replacing the compromised key with a new one.

3. OEM outsourcing to Multiple ODMs using the same OEM KM keys. OEMs may
differentiate between the ODMs by using different KM IDs while using the same
keys for OEM KM.

1.2 Goal

The goal of this guide is to train the user to:

1. Manifest and sign OEM components

2. Include data on all signatures in the IFWI image

3. Build the production IFWI image

1.3 Pre-Requisites

The user should download and install the following kit.

 Latest Intel® ME FW kit: The kit can be downloaded from the following location:
https://platformsw.intel.com/

https://platformsw.intel.com/

Introduction

User Guide Intel Confidential 7

 CNL/CFL Firmware Bring Up Guide: The overall platform bring-up procedure is
described in this guide which can be found in the ME FW kit.

 CNL/CFL System Tools User Guide: The System Tools User Guide gives further
detail on the usage of all the firmware manufacturing tools and is the definitive
guide to the details of each tool’s usage.

1.4 Tools Used In This Document

The following tools are referenced this document:

 Intel® Flash Image Tool (Intel® FIT): Found in the Intel® ME FW Kit

 Intel® Manifest Extension Utility (Intel® MEU): Found in the Intel® ME FW Kit

 OpenSSL: Open Source

1.5 Terminology

Term Description

Intel® FIT Intel® Flash Image Tool

IBB Initial Boot Block

IBBL Initial Boot Block Loader

IFWI Integrated Firmware Image (System FW Image on SPI)

ISH Integrated Sensor Hub

OBB OEM Boot Block

Intel® MEU Intel® Manifest Extension Utility

SUT System Under Test

CNL Cannon Lake

CFL Coffee Lake

OEM KM OEM Key Manifest

EOM End of Manufacturing

ROT KM Root of Trust Key Manifest (containing Intel public key hashes to

authenticate Intel signed FW components).

§

Intel® Manifest Extension Utility (Intel® MEU)

8 Intel Confidential User Guide

2 Intel® Manifest Extension

Utility (Intel® MEU)

The Intel® Manifest Extension Utility (MEU) inputs a firmware binary created by a 3rd

party and outputs an independent-updateable partition (IUP) that is compressed and
signed. After completing this process the signed binary can be added to the SPI flash
image using the Intel® FIT tool.

The Intel® Manifest Extension Utility (MEU) requires administrator privileges to run

under Windows* OS. The user needs to use the Run as Administrator option to open
the CLI in Windows* 7 64/32 bit and Windows* 8.1 64/32 bit.

The Intel® MEU tool completes the following steps:

 Creates an Independent Updatable Partition (IUP) by adding manifest and meta-
data information to the firmware.

 Calls an external LZMA tool for compression of the firmware binary. The LZMA tool
is supplied with the ISH binary or may be downloaded from http://7-
zip.org/sdk.html.

 Calls the signing infrastructure tool to sign the partition.

2.1 Usage

The executable can be invoked by:

MEU.exe [-exp] [-h|?] [-3rdparty] [-version|ver] [-binlist] [-o] [-f]

[-gen] [-cfg] [-decomp] [-save] [-w] [-s] [-d] [-u1] [-u2] [-u3]

[-mnver] [-mndebug] [-st] [-stp] [-key] [-noverify] [-keyhash] [-resign]

[-export] [-import]

Table 2-1. Options

Option Description

-H or -?: Displays the list of command line options supported by the Intel® MEU

tool.

-3rdparty Displays 3rd party software credits.

-EXP Shows examples about how to use the tools.

-VER Shows the version of the tools.

-binlist Displays a list of supported binary types.

-o <filename> Overrides the output file path.

-f <filename> Specifies input XML file.

-gen <type> Specifies the binary type for which to generate a template XML file.

-cfg <filename> Overrides the path to the tool config XML file.

http://7-zip.org/sdk.html
http://7-zip.org/sdk.html

Intel® Manifest Extension Utility (Intel® MEU)

User Guide Intel Confidential 9

Option Description

-decomp

<type>

Specifies the binary type to use for decomposition.

-save

<filename>

Specifies the output XML path.

-w <path> Overrides the $WorkingDir environment variable.

-s <path> Overrides the $SourceDir environment variable.

-d <path> Overrides the $DestDir environment variable.

-u1 <path> Overrides the $UserVar1 environment variable.

-u2 <path> Overrides the $UserVar2 environment variable.

-u3 <path> Overrides the $UserVar3 environment variable.

-mnver <value> Overrides the version of the output binary. (Format:

Major.Minor.Hotfix.Build)

-mndebug

<true|false>

Overrides the debug flag in the output binary's manifest(s).

-key <path> Overrides the signing key in the tool config XML file.

-st <tool> Overrides SigningTool in the tool config XML file.

-stp <path> Overrides SigningToolPath in the tool config XML file.

-noverify Skips verification of generated manifest signature.

-keyhash

<path>

Exports the public key hash to a directory.

-resign

<indices|'all'>

Resigns manifest(s) in a binary.

-export

<indices|'all'>

Exports manifest(s) from a binary.

-import <path> Imports manifest(s) into a binary.

2.2 Examples

2.2.1 Generate Configuration XML Template

This command will generate the configuration XML template file using MEU.

Windows / WinPE:

MEU.exe -gen meu_config

==

=

Intel(R) Manifest Extension Utility. Version: 12.0.0.xxxx

Copyright (c) 2013 - 2017, Intel Corporation. All rights reserved.

Intel® Manifest Extension Utility (Intel® MEU)

10 Intel Confidential User Guide

7/12/2017 - 10:16:35 am

==

=

Command Line: meu.exe -gen meu_config

Log file written to meu.log

Saving XML ...

XML file written to meu_config.xml

2.2.2 Generate Code partition XML

This command will generate the Code partition XML file using MEU.

Windows / WinPE:

MEU.exe -gen CodePartition

===

Intel(R) Manifest Extension Utility. Version: 12.0.0.xxxx

Copyright (c) 2013 - 2017, Intel Corporation. All rights reserved.

7/12/2017 - 10:16:35 am

===

Command Line: meu.exe -gen CodePartition

Saving XML ...

XML file written to CodePartition.xml

2.2.3 Generate Compressed and Signed Partition

This command will create the compressed and signed partition using MEU.

Windows / WinPE:

MEU.exe -f CodePartition.xml -o ISHC_MEU.bin

===

Intel(R) Manifest Extension Utility. Version: 12.0.0.xxxx

Copyright (c) 2013 - 2017, Intel Corporation. All rights reserved.

7/12/2017 - 10:16:35 am

===

Command Line: meu.exe -f CodePartition.xml -o ISHC_MEU.bin

Executing pre-build actions

Building objects

Processing attribute: CodePartition

Executing post-build actions

Intel® Manifest Extension Utility (Intel® MEU)

User Guide Intel Confidential 11

Full Flash image written to C:\...\ISHC_MEU.bin

§

OEM Component Signing High-Level

12 Intel Confidential User Guide

3 OEM Component Signing High-

Level

This section describes high-level OEM component signing in the context of the OEM

Key Manifest (KM).

3.1 OEM Key Manifest Creation

The diagram below demonstrates high-level flow of OEM KM creation.

Figure 1: OEM KM Creation Process

High-Level Procedure:

1. To authenticate OEM components using the OEM KM, input each of their public
keys into MEU to produce public key hashes

2. Add the public key hash binaries to MEU XML
3. Input the MEU XML to MEU to generate the OEM KM binary
4. MEU outputs manifest, extensions, hash, debug signature in the OEM KM

binary
5. Perform production signing on the OEM KM binary.
6. Input the production signed components into FIT (including the OEM KM

signed binary) & OEM Public Key hash

Important Note: The OEM KM is optional. OEMs who do not wish to use the OEM KM
may keep out the OEM KM binary. By excluding or including OEM KM binary, the given

platform will be permanently set to require/not-require OEM KM per the
configuration set in FIT. This choice will only be permanently committed to FPF HW

at the time the platform undergoes closemnf/end-of-manufacturing process. This
cannot be reversed after closemnf/EOM. This will be done by an FPF value called
OEM_KM_Presence. This FPF value can be viewed by MEInfo.

OEM Component Signing High-Level

User Guide Intel Confidential 13

3.2 Why the OEM KM is Important?

The Intel ME Authentication infrastructure is important to the OEMs platform because

OEM can take advantage of Intel HW Root of Trust (ME ROM) to extend the chain of
trust to the BIOS and even to the OS.

Figure 2: Platform Chain of trust extended from Intel HW Root of Trust (ME ROM HW)

3.3 Creation process of OEM KM

Please refer to this chapter: OEM Key Manifest.

§

Manifesting and Signing OEM Components in the IFWI Image

14 Intel Confidential User Guide

4 Manifesting and Signing OEM

Components in the IFWI Image

4.1 Creating a Signed IFWI Image

A high-level overview of creating a signed IFWI image using OEM components is

described below. The key steps are:

1. Generate PKI key pairs and the public key hash for:

a. Each entry in the OEM Key Manifest. These are enumerated in Section 7.2.

b. The OEM Key Manifest

2. Use the Intel® MEU tool to add to each binary a manifest, signature, and where
relevant also add metadata, stitch and/or compress the binary.

3. Create an OEM Key Manifest1, including within it the public key hash of each of the
created keys, and use the Intel MEU to manifest/sign it. Note: The order in which

steps 2 and 3 are executed does not matter.

a. Signing the “OEM KM” binary may be done by performing the normal OEM
proprietary production signing flow. Refer to the production signing section
for more details.

4. Add each binary component to the Intel FIT.

5. Add to Intel FIT the OEM Key Manifest created in step 3.

6. Add to Intel FIT the public key hash for the key used to sign the OEM KM. At EOM
(End of Manufacturing)/closemnf process, this value of the OEM Public Key hash

will be committed/burned into the HW FPFs permanently.

7. For debug use-cases, you may add an OEM debug token to Intel FIT.

1 OEM KM is optional. OEMs who do not wish to use OEM KM may keep OEM Public Key hash as zeros in FIT
tool.

Manifesting and Signing OEM Components in the IFWI Image

User Guide Intel Confidential 15

Figure 3. High Level Overview of Manifesting and Signing OEM Components in the IFWI
Image

Add
 Hash
 Manifest
 Metadata (optional)

Stitch components (optional)
Compress (optional)

MEU
MEU signs

with
OpenSSL

Take each
binary

needing
manifest and

signature

Signed and
manifested

binary
component

Create key pairs for OEM
Key Manifest entries and

OEM Key Manifest

Create OEM
Key Manifest
xml, listing all
public key
hashes, where
relevant

Add hash, manifestMEU
MEU signs

with
OpenSSL

Signed and
manifested
OEM Key

Hash
Manifest

4.2 Opt-ing out of the OEM KM

OEMs who do not wish to utilize the OEM KM should:

1. Do not create nor include OEM KM binary into FIT. FIT will set an FPF value
to indicate OEM KM is not present. This is FPF that will be permanently set
in the FPF HW at time of EOM flow.

2. If using ISH, iUnit, or Audio FW, use Intel signed ISH, iUnit and Audio. Intel
signed FW is authenticated by Intel ROT KM (Root of Trust Key Manifest)
which is part of the Intel signed ME FW. Make sure to use pre-production
ISH/Audio/iUnit with pre-production ME FW & production ISH/Audio/iUnit
to make sure keys match and verified per keys in the appropriate ME FW.

§

Creating PKI Key Pairs

16 Intel Confidential User Guide

5 Creating PKI Key Pairs

5.1 Introduction

If creating a signed IFWI image, you will need to create PKI key pairs, as well as the
public key hash for:

1. Each entry in the OEM Key Manifest. See Creation of Manifest for full list of entries
in the OEM KM.

2. The OEM Key Manifest

5.2 Generating Key Pair for Signing

The Intel tools are designed to work together with the open source OpenSSL tool

(version 1.0.2b or higher), which generates key pairs in the RSA-2048 PKCS-1.5
format. This is the only key format which is supported for the Intel IFWI
image signing flow! Although other tools which generate key pairs in this format can
be used for signing, Intel tools currently do not interface with any other tool, and if
you choose to use a different tool, Intel cannot provide support.

The OpenSSL tool is not provided by Intel, it must be installed separately. One source
for the OpenSSL binaries is Shining Light Productions, the "Light" version is sufficient.
Ensure that OpenSSL.exe can be run in the directory in which it is installed, and it is
able to create output files there as well, otherwise you may see errors when executing

some of the commands.

You can generate a private key by running the following command from the CLI:
openssl.exe genrsa --out privkey.pem 2048

A public key can be extracted from the private key using:
openssl.exe rsa -in privkey.pem -pubout -out pubkey.pem

5.3 Creating the Public Key Hash:

A public key hash is a binary file containing the modulus and exponent of the public

key in little endian format. You can create it using the Intel® MEU, or manually.

5.3.1 Creating a Public Key Hash Using Intel® MEU

You can created the public key hash using the Intel® MEU in one of 3 different ways:

1. Extraction from an already signed binary:
meu.exe -keyhash <output hashfile> -f <input.bin>

2. Extraction from a public or private key in PEM format
meu.exe -keyhash <output hashfile> -key <inputkey.pem>

3. Creation when building or signing a binary

https://slproweb.com/products/Win32OpenSSL.html

Creating PKI Key Pairs

User Guide Intel Confidential 17

meu.exe -keyhash <output hashfile> -f <input.xml> -o <output.bin>

The public key hash is a readable string, and can be copied and pasted

from the text file as needed.

Here is an example of generating the public key hash from a signed binary:
meu.exe -keyhash temp/hash -f iunp.bin

==

=

Intel(R) Manifest Extension Utility. Version: 12.0.0.xxxx

Copyright (c) 2013 - 2017, Intel Corporation. All rights reserved.

7/12/2017 - 10:16:35 am

==

=

Command Line: meu -keyhash temp/hash -f iunp.bin

Log file written to meu.log

Loading XML file: C:/Users/meu_config.xml

Public Key Hash Value:

 14 05 A8 A4 EB 1C 8A C2 51 19 7D 85 96 14 09 FF 15 FD CD 23 D3 25 CC

DD 88 D2 17 5C DE 3B 27 36

Public Key Hash Saved to:

 temp\hash.bin

 temp\hash.txt

Program terminated.

5.3.2 Creating Public Key Hash Manually

You can create a public key hash manually in one of two different ways:

1. Extraction from the public or private key:

a. Using OpenSSL, dump the key details:

If using the public key:

openssl.exe rsa -in public.pem -text -noout -pubin

If using the private key:

openssl.exe rsa -in private.pem -text -noout

b. Copy the modulus (excluding any leading bytes that are all 0s)

c. Reverse the modulus byte order (Use excel to paste all the bytes on different
rows into a column, then put ascending numbers in another column and do a

reverse sort on the numbers)

d. Paste the reverse byte modulus into a new file <new file> in a hex editor

e. Copy the exponent following the modulus into the new file (make sure it is
little endian)

Hash the new file using

Creating PKI Key Pairs

18 Intel Confidential User Guide

openssl.exe dgst -sha256 <new file>

2. Extraction from a manifest signed with the keys, by MEU

a. Open a signed file that MEU has created in a hex editor

b. Search for the string “$MN2”, then move 100 bytes after the start of “$MN2”
(this will be the start of the modulus + exponent)

c. Extract the following 260 bytes to a new file <new file>

d. Hash the new file using openssl:
openssl.exe dgst -sha256 <new file>

The public key hash is a readable string, and can be copied and pasted from the text

file as needed.

5.4 Key Security

Although the same key may be used for signing each entry in the OEM Key Manifest,

and indeed for signing the manifest itself, Intel recommends using separate key pairs
for signing each component. Using the same key for signing multiple components is
less secure, as if the key is compromised, the entire package is compromised.

Private keys should always be stored securely and kept secret to provide a robust

secure boot flow and firmware load. If the keys escape to 3rd parties, they may be
used to create and sign unofficial versions of the binaries which can then be loaded
onto the platform.

Keys may be needed again if there is a need to re-sign a future version of a binary.

OEMs need to take special steps to ensure that the private keys are kept secure while
allowing restricted/audited access to them for manifesting/signing components and

building the image. For example, MEU could be run on a secure server which houses
the keys or OEMs may use the MEU export function for production signing if MEU does

not run on the OEM’s signing server (see production signing chapter).

OEMs should use a separate set of keys during the development process and creating
production images. This will ensure that on production platforms only the production
OEM Key Manifest with signatures for production components can be run.

§

Using Intel® MEU to Manifest & Sign

User Guide Intel Confidential 19

6 Using Intel® MEU to Manifest &

Sign

6.1 Introduction

All of the components to be authenticated by keys in the OEM Key Manifest owned by
an OEM are expected to have a signed manifest added to them.

6.2 Binary Manifesting Signing Overview

Intel signing for CNL/CFL platforms employs an RSA 2048 public key infrastructure
(PKI) mechanism to sign and verify components of the IFWI image. The private key is
used to sign the image components as shown in Figure 2 below. The Intel MEU is used

to create the manifests and interfaces with OpenSSL to add signatures to the
manifest.

Using Intel® MEU to Manifest & Sign

20 Intel Confidential User Guide

Figure 4. Schematic View of Manifesting and Signing Process

Calculate Hash of the Data 1011011001100000011100001100000001

Encrypt the Hash using Private Key

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Attach Signature to

Manifest

Data

SHA256

RSA2048

Signature

Manifested and
Digitally Signed Data

Add Manifest to the file, including
hash data

Calculate Hash of the
Manifest SHA2561011011001100010101100001100101001

6.3 Intel® MEU Configuration

To get started using Intel MEU you must first configure the tool. To do this, run the
following command:
meu -gen meu_config

This will generate a default configuration xml file:

Using Intel® MEU to Manifest & Sign

User Guide Intel Confidential 21

Figure 5. Intel MEU Configuration xml

If you will not be signing the manifests, then change the ‘SigningTool’ node to
‘Disabled’.
<SigningTool label="Disabled" value_list="Disabled,,OpenSSL,,

MobileSigningUtil" label="Signing Tool" help_text="Select tool to be

used for signing, or disable signing." />

If you will be signing the manifests, the xml should be edited to ensure the

‘SigningToolPath’ node correctly points to the OpenSSL executable file and that the
path to the private key used for signing is correct. You are free to edit the other fields
if appropriate.

6.4 Intel® MEU Binlist

Intel MEU supports manifesting and signing a large number of different file types. To
see the full list, run the following:
meu.exe --binlist

Using Intel® MEU to Manifest & Sign

22 Intel Confidential User Guide

Figure 6. Intel MEU list of Supported Binary Types

6.4.1 Bin-list usage

Each of the items in the above binlist is supported by MEU for manifesting & signing.
For each file that needs to be manifested and signed you use the Intel MEU to
generate an xml for that file type and then edit the xml to ensure the data is correct –
in particular:

1. Update xml with targeted FW usage
2. Update xml with targeted FW path

You then call the MEU with the edited xml as input, and pass in the name of the

required output file, it will create the manifested and signed output file:

meu.exe -f <input.xml> -o <output.bin>

It is recommended practice to sign each file with a different private key. An easy way
to do this is to use the configuration xml without changing it and override the private

key used for signing on the command line (otherwise the private key in the MEU
config would be used to sign all the components):

meu.exe -f <input.xml> -o <output.bin> -key <privatekey.pem>

6.5 Intel® MEU Decomposition

Intel MEU is able to decompose a manifested and signed binary returning it to the
original state it was in before the Intel MEU added a manifest and/or signature while
providing an xml detailing the decomposition. This xml can later be used as input to

the Intel® MEU to recreate the full binary with manifest and signature. The –decomp

command also requires the binary type as its first parameter. So, for example, to
decompose an OEM Key Manifest binary, you can call:

meu -decomp OEMKeyManifest -f <input.bin> --save <decomp.xml>

Using Intel® MEU to Manifest & Sign

User Guide Intel Confidential 23

6.6 Intel® MEU Re-sign

Intel® MEU is able to re-sign a binary that has already been signed. This is very useful

when changing the signing keys – the relevant binary files just need to be re-signed.

meu.exe --resign -f <input.bin> --o <output.bin> -key <privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the
key is different than that defined in the default Intel® MEU configuration xml.

Some binaries – such as full IFWI images, include multiple manifests. When calling the

–resign option on such binaries, you need to include the index of the manifest to be
re-signed, or ‘all’ if all are to be re-signed (using the new key). If the index, or ‘all’ is

not included, the Intel® MEU will show a full list of the manifests included in the
binary:

More than one manifest was found in this file. Please provide a comma-

separated list of the manifest indices you want to resign. (ex. -resign

"0,3,5") or specify "all" (ex. -resign "all")

The following manifests were detected:

 Index | Offset | Size | Name (if available)

 0 | 0x000084058 | 0x000000378 | RBEP.man

 1 | 0x000094058 | 0x000000378 | PMCP.man

 2 | 0x0000A4580 | 0x000001750 | FTPR.man

 3 | 0x0000A9000 | 0x000000330 | rot.key

 4 | 0x0001F4000 | 0x000000330 | oem.key

 5 | 0x0001FB058 | 0x000000378 | ISHC.man

 6 | 0x00023B070 | 0x000000378 | IUNP.man

 7 | 0x00023D0E8 | 0x0000004B0 | WCOD.man

 8 | 0x0002BD0B8 | 0x000000448 | LOCL.man

 9 | 0x000342448 | 0x000000C00 | NFTP.man

Error 24: Failed to resign manifest(s). Missing manifest indices list.

The Intel® MEU can then be called again including the index desired. Following the
above example if the OEM KM is to be re-signed, call:
meu.exe --resign 4 -f <input.bin> --o <output.bin> -key <privatekey.pem>

6.7 Different Binary Types Supported By Intel® MEU

Intel MEU is able to add manifests and sign several types of files, as enumerated

below.

Note: All binaries provided by Intel will have a manifest and signature. OEMs do not
need any further processing on these binaries.

Using Intel® MEU to Manifest & Sign

24 Intel Confidential User Guide

6.7.1 ISH FW

The ISH FW binary is regarded as a ‘code partition’ by the Intel® MEU. Intel signed
ISH FW is authenticated by the Intel® ME FW, but if the OEM wishes to have their
own custom ISH FW instead of the Intel signed version, the OEM may do so by
customizing the FW then signing with their private key and including the public key

hash in the OEM KM. To sign such FW, the OEM needs to generate the code partition
xml template using the following command:

meu -gen CodePartition

The xml generated will need to be edited to enter version information about the code
partition, as well as the path to the binary. If compression is required the path to the

LZMA compression file also needs to be entered. Note that the Intel MEU tool only

supports the LZMA tool provided by Intel to compress binaries. The ISH binary
requires compression.

Figure 7. Code Partition xml

Once the Code Partition xml has been edited to include all the required input files, the
MEU can be run with the xml as input to manifest and sign the Code Partition with the
private key created for this purpose.
meu.exe -f <CodePartition.xml> -o <ISH.bin> -key<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different than that defined in the default Intel MEU configuration xml.

Using Intel® MEU to Manifest & Sign

User Guide Intel Confidential 25

6.7.2 IUnit / aDSP

The IUnit and aDSP (Audio) FW binaries are regarded as ‘code partition metadata’ by
the Intel MEU. Intel signed iUnit & aDSP (Audio) FW is authenticated by the Intel ME
FW, but if the OEM wishes to substitute their own custom iUnit/aDSP FW the OEM may

do so by customizing the FW, signing it with their private key and including the public
key hash in the OEM KM. To sign such FW, the OEM needs to generate xml for it using
the following command:

meu -gen CodePartitionMeta

The xml generated will need to be edited to enter the path to the binary and the path

to a metadata binary file.

Figure 8. Code Partition Metadata xml

Once the Code Partition Metadata xml has been edited to include all the required input
files the MEU can be run with the xml as input to manifest and sign it with the private
key created for this purpose.

meu.exe -f <CodePartitionMeta.xml> -o <IUnit.bin> -key

<privatekey.pem>

Using Intel® MEU to Manifest & Sign

26 Intel Confidential User Guide

It is only necessary to override the private key for signing (as in the example) if the

key is different than that defined in the default Intel MEU configuration xml.

6.7.3 Secure Tokens (OEM Unlock Tokens)

The OEMUnlockToken binary is authenticated by the Intel ME FW. OEMs who wish to
use this feature need to create token, sign it with OEM private key and include the

public key hash in the OEM KM for OemUnlockToken. To create such token, the OEM
needs to generate xml for it using the following command:

meu -gen OemUnlockToken

The xml generated will need to be edited to enter the path to the part ID binary

Figure 9. OEMUnlockToken xml

There are multiple flags that can now be set for the token as following:

In the TokenFlags tag, you can set following values to yes
 PartRestricted: This means that the token can be used on any platform

whose token key hash matches that of the token, and tied to a particular

platform ID when value is set to yes.
 Anti-Replay Protected. Anti-Replay protection stops a token being re-used

on the same device after new token is created for device. This option is only
relevant for tokens tied to a particular platform ID.

 TimeLimited. This means that the token has time limit. Anti-Replay Protected
must be set for token with time expiration, because otherwise you can re-use

the token after RTC clear.

It is recommended to use to secure token with time expiration and Anti-reply flag.

Using Intel® MEU to Manifest & Sign

User Guide Intel Confidential 27

In the root node you can set:

 Expiration timeout (if relevant)
 Part ID path. You can retrieve the Part ID data using Intel® FPT, by calling

FPT.exe --GETPID <file>

This will retrieve the part ID into a file. Provide the path to the directory that

contains PID.bin or multiple PID binaries.
Note: Executing this command will invalidate all secure tokens with Anti-
replay protection set generated earlier for the given platform

In the TokenKnobs section, you can set the ‘Knobs’ for the token. These define what
the token allows/disables on the platform. The knobs available vary depending on the

token being created. Here is an explanation of the various knobs:

Knob Meaning

OEM Unlock Allow an OEM (Orange) unlock. For CNP it will enable debug interfaces to

ISH and Audio

ISH GDB Debug Enable ISH GDB support

Note: VISA override, DisableSecureBootknob, DisableIshFwAuthenticationKnob,
DisableIunitFwAuthenticationKnob, DisableAudioFwAuthenticationKnob are not
supported with OEM Secure Token and should be set to disabled

Once the OEMUnlockToken xml has been edited to include all the required input files

the MEU can be run with the xml as input to manifest and sign it with the private key
created for this purpose.

meu.exe -f <OEMUnlockToken.xml> -o <OEMtoken.bin> -key

<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the
key is different than that defined in the default Intel MEU configuration xml.

§

OEM Key Manifest

28 Intel Confidential User Guide

7 OEM Key Manifest

7.1 Introduction

The OEM Key Manifest is the central part of the entire signing mechanism. It lists the
public key hashes of all the OEM-created binaries within the IFWI as well as other

binaries and manifests that can be loaded at a later date (such as audio and camera
binaries, OS Kernel and OS Boot loader, and secure tokens).

If the IFWI image will not be signed, the OEM can skip the creation of an OEM Key
Manifest.

The OEM Key Manifest itself, once created, is signed with a key whose public key hash
will be entered into Intel FIT. When the platform manufacture is complete, this public
key hash will be burned into a fuse (FPF) that can never be changed. Thus we create a
secure verification mechanism: firmware is able to verify that the OEM Key Manifest
on the platform is the same one whose hash is burned into a hardware fuse, and each

hash within the manifest allows firmware to verify the binary or manifest components
it plans to load.

Important!

Since the hash burned into the platform hardware can never be changed, it is critical

to secure the private key used to sign the OEM Key Manifest. If at any stage a new
image needs to be burned onto the platform (e.g. via flash gang programmer), it must
be signed with this key.

7.2 Creation of Manifest

The manifest file xml template can be generated using the following command:

meu -gen OEMKeyManifest

This generates an xml template with a single KeyManifestEntry node, which lists the
file type, and the path to its public key hash.

OEM Key Manifest

User Guide Intel Confidential 29

Figure 10. Default OEM Key Manifest XML

The KeyManifestId field must not be left with its default value of 0x1 (must be given
some non-zero value). It is critical that the matching field in FIT is also changed to
match the non-zero value, as this field will be burned into an FPF and used to validate

the OEM Key Manifest on platform boot.

Extra ‘KeyManifestEntry’ nodes should be added for each file that has a unique key

hash to be entered. If several files share the same key, they can be included within
the same node, as in the default xml template.

So, for example, if the OEM Key Manifest wants to have

 IshManifest, iUnitBootLoaderManifest & iUnitMainFwManifest with key 1

It would appear as follows:

OEM Key Manifest

30 Intel Confidential User Guide

Figure 11. OEM Key Manifest with 1 key for multiple manfiests

If the OEM Key Manifest wants to have

 IshManifest with key 1

 iUnitBootLoaderManifest & iUnitMainFwManifest with key 2

It would appear as follows:

Figure 12. OEM Key Manifest with 2 key for multiple manfiests

The file types enumerated in the OEM Key Manifest for which key hashes can be
entered are:

OEM Key Manifest

User Guide Intel Confidential 31

Table 2. Components Recognized by Intel MEU, and How Key Manifests should Handle

Manifest
POR

CNL/CFL?
Description Usage

iUnitBootLoaderManifest Y Camera firmware boot

loader

If OEM wishes to

customize this FW, they
may sign customized FW
and include its public
key hash in OEM KM.

Otherwise, Intel signed
version of this FW is
authenticated by ME FW

without any need to
include any keys by
OEMs.

iUnitMainFwManifest Y Camera main firmware

IshManifest Y Integrated Sensor Hub
main firmware.

cAvsImage0Manifest Y Audio (aDSP) firmware 0

cAvsImage1Manifest Y Audio (aDSP) firmware 1

OemDebugManifest Y OEM Debug token

OsBootLoaderManifest Y OS Boot loader

OsKernelManifest Y OS Kernel

SilentLakeVmmManifest N Silent Lake manifest

IfwiManifest N For small core IFWI2.0
capsule update via BIOS

BootPolicyManifest
N For Small core Boot Guard

2.0 Intel TXE verified boot.

OemSmipManifest

N Small core (APL/GLK)

SMIP includes many of the
settings defined in Intel
FIT

Not every hash listed in the table above is mandatory – for example, if no aDSP audio

firmware is planned to be supported, the manifest may omit the audio entries. In such
a case audio firmware would fail to be loaded by ME, if attempted. Likewise, if the
OEM is not using the Intel’s APIs to verify the OS kernel and manifest, then the
respective hashes do not need to be included in the OEM Key Manifest. If the OEM
does not plan to support Secure OEM debug Tokens, then the token hashes do not
need to be included.

Once the OEM Key Manifest xml has been edited to include all the required hashes,
the MEU can be run with the xml as input to manifest and sign the with the private
key created for this purpose (private key to be used here will require to have its public

OEM Key Manifest

32 Intel Confidential User Guide

key hash set in the “OEM Pub Key Hash” FPF in FIT. This hash will be permanently
committed to the FPF HW at EOM/Closemnf):

meu.exe -f <OEMKeyManifest.xml> -o < OEMKeyManifest.bin> -key

<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different than that defined in the default Intel MEU configuration xml.

§

Add Components to Intel® FIT

User Guide Intel Confidential 33

8 Add Components to Intel® FIT

8.1 Introduction

Intel FIT is a tool provided to OEMs to stitch together multiple binary files,

configuration data and other input into a full SPI image. This document will only
discuss the usage of the tool as relevant to the signing mechanism. The full image
creation procedure & FIT functionalities are detailed in the Cannon Lake - Intel® ME
Firmware Bring-Up Guide & System Tools User Guide.

8.2 Include each production signed binary

FIT includes input fields allowing the input of binary files. Most are available in the
Flash Layout tab.

8.3 Add the OEM Key Manifest

Add the signed OEM KM binary into FIT.

Important Note: The OEM KM is optional. OEMs who do not wish to use the OEM KM
may keep out the OEM KM binary. By excluding or including OEM KM binary, the given

platform will be permanently set to require/not-require OEM KM per the
configuration set in FIT. This choice will only be permanently committed to FPF HW
at the time the platform undergoes closemnf/end-of-manufacturing process. This

cannot be reversed after closemnf/EOM. This will be done by an FPF value called
OEM_KM_Presence. This FPF value can be viewed by MEInfo.

Figure 13. Entering OEM Key Manifest

8.4 Add the Public Key Hash for OEM Key Manifest

Add to Intel FIT the public key hash for the OEM Key Manifest. This field is available in
the Platform Protection tab.

Add Components to Intel® FIT

34 Intel Confidential User Guide

This hash will be burned into an FPF in the FPF HW when the system closes

manufacture (closemnf/EOM), and can never be changed after this stage.

Figure 14. Entering OEM Public Key Hash

8.5 Change the Key Manifest ID

The Key Manifest ID field must be changed from 0x0 to match the value set in the

OEM Key Manifest.

Figure 15. Entering OEM Public Key Hash

§

Production Signing

User Guide Intel Confidential 35

9 Production Signing

9.1 Introduction

Some OEMs will have already existing signing tools and systems and will want to use

Intel® MEU together with them without having to integrate with OpenSSL. In order to

do that the OEM needs to use the MEU to create the manifests required and then
perform production signing separately.

The purpose of this section is to allow customers to perform production signing

without requiring MEU to run on the signing server. The OEM may use MEU to

debug/dummy signing first and then export the given manifest to a signing server to
perform the OEM proprietary signing flow.

9.2 Production signing high-level

Figure 16: Production Signing Flow for OEM FW Binaries

High-level production signing process:

1. Pass the FW binary to be manifested & signed by the MEU (integrating with

OpenSSL)
2. MEU adds manifest, extensions, hash, debug signature

3. Use MEU to extract debug signed manifest via export function
4. Pass the debug signed manifest to OEM signing infrastructure
5. Remove the debug signature + debug public key + sign the exported manifest

with OEM signing infrastructure by inserting the production manifest +
production public key

6. Pass production signed manifest and debug signed manifest+binary to MEU

7. MEU swaps the production signed manifest in place of debug signed manifest

Production Signing

36 Intel Confidential User Guide

Note: The OEM “Production Key” is the key the wish to use for the given bin for

platforms in the field. They may define this key to be pre-production or production per
the needs (i.e. during R&D dedicate a “Pre-production” key and for launched
platforms, use “Production” key.)

9.3 Export Manifests

Use the MEU –export function to export the manifest from binaries who need
signatures added or changed. The manifest is exported to a directory.
meu -export -f <binary.bin> -o <directory_containing_manifests>

If the binary includes multiple manifests, you must specify the index of the desired
manifest, e.g.

meu -export 0 -f <binary.bin> -o <directory_containing_manifests>

If you do not supply an index or include all with the –export flag, MEU will output a

list of all the manifests, including their indices:

More than one manifest was found in this file. Please provide a

comma-separated list of the manifest indices you want to export.

(ex. -export "0,3,5") or specify "all" (ex. -export "all")

The following manifests were detected:

 Index | Offset | Size | Name (if available)

 0 | 0x000001130 | 0x000000D9C | FTPR.man

 1 | 0x000053000 | 0x000000330 | rot.key

 2 | 0x000094058 | 0x000000378 | RBEP.man

 3 | 0x0000A1748 | 0x000001280 | NFTP.man

Error 26: Failed to export manifest(s). Missing manifest indices

list.

9.4 Manifest structures

In order to perform production signing on the OEM server, the OEM needs to re-sign

the portion of the manifest, replace the signature and insert the production public key.

This section details the manifest layout to enable this process.

Production Signing

User Guide Intel Confidential 37

Figure 17: OEM KM Manifest Structure

Production Signing

38 Intel Confidential User Guide

Figure 18: Code Partition Manifest Structure

9.4.1 Manifest Header

In order to use an alternate signing tool, the OEM needs to:

1. Take the “Signed Portion” section of the above shown manifests and re-sign
with the production signing key.

2. Change the “Signature” and “Public Key” section with the production signature

and production public key used.

Structure of manifest header:

Table 3: Manifest Header

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Header type 0 0 4 Must be 0x4

Header Length 4 4 4 In DWORDs; equals 161 for this version

Header Version 8 8 4 0x10000 for this version

Flags 12 C 4 Bit 31: Debug Manifest (manifest is debug signed, not

production signed)

Bits 0-30: reserved, must be 0

Vendor 16 10 4 0x8086 for Intel

Production Signing

User Guide Intel Confidential 39

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Date 20 14 4 yyyymmdd in BCD format

Size 24 18 4 In DWORDs, size of entire manifest (header +

extensions). Maximum size is 2K DWORDs (8KB).

Header ID 28 1C 4 Magic number. Equals “$MN2” for this version

Reserved 32 20 4 Must be 0

Version 36 24 8 Major, minor, hotfix, build

Security Version

Number

44 2C 4 SVN, least significant byte used to derive keys

Reserved 48 30 8 Must be 0

Reserved 56 38 64 Must be 0

Modulus Size 120 78 4 In DWORDs; 64 for pkcs 1.5-2048

Exponent Size 124 7C 4 In DWORDs; 1 for pkcs 1.5-2048

Public Key 128 80 256 Modulus in little endian format

Exponent 384 180 4 Exponent in little endian format

Signature 388 184 256 RSA signature of manifest extension in little endian. The

signature is an PKCS #1-v1_5 of the entire manifest

structure, including all extensions, and excluding the

last 3 fields of the manifest header (Public Key,

Exponent and Signature).

There may be multiple extensions after this manifest header making up the rest of the

manifest binary.

The entire manifest binary must be hashed using SHA-256, except for the 3 ‘crypto’
fields in the header: Public Key (offset 128, size 256), Exponent (offset 384, size 4)
and Signature (offset 388, size 256). The hash must then be encrypted with PKCS #1-
v1_5 to create the signature followed by the 3 ‘crypto’ fields in the manifest header

populated with the key, exponent and signature.

No other fields in the manifest should be changed.

9.4.2 Signed Package Info Extension

For authenticating the various platform firmware components such as aDSP, iUnit, ISH

FW, etc. This structure will appear after manifest header for codepartitions as shown
in Figure 18.

Table 4: Signed Package Info Extension

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Extension Type 0 0 4 = 15 for Signed Pkg Info Extension

Extension Length 4 4 4 In bytes; equals (52 + 52*n) for this version, where ‘n’

is the number of modules in the manifest

Production Signing

40 Intel Confidential User Guide

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Package Name 8 8 4 Name of the package

Version Control

Number (VCN)

12 C 4 The version control number (VCN) is incremented

whenever a change is made to the FW that makes it

incompatible from an update perspective with previously

released versions of the FW

Usage Bitmap 16 10 16 Bitmap of usages depicted by this manifest, indicating

which key is used to sign the manifest

SVN 32 20 4 SVN of this signed image

Reserved 36 24 16 Must be 0

Module 0 Name 52 34 12 Character array; if name length is shorter than field

size, the name is padded with 0 bytes.

Module 0 Type 64 40 1 0 – Process

1 – Shared Library

2 – Data

3 – Reserved…

Module 0 Hash

Algorithm

65 41 1 2 = SHA256

Module 0 Hash

Size

66 42 2 Size of Hash in bytes = N. N = 32

Module 0

Metadata Size

68 44 4 Size of metadata file

Module 0

Metadata Hash

72 48 32 The SHA2 of the module metadata file

...

9.4.3 OEM Key Manifest

After Manifest Header for OEM KM, there will be Key Manifest Extension that is used

for OEM KM as shown in Figure 17.

Table 5: Key Manifest Extension

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Extension Type 0 0 4 = 14 for Key Manifest Extension

Extension Length 4 4 4 In bytes; equals (36 + 68*n) for this version, where ‘n’

is the number of keys in the OEM KM manifest

Key Manifest Type 8 8 4 2 = OEM Key Manifest

Key Manifest

Security Version

Number (KMSVN)

12 C 4 The security version number for the OEM Key Manifest

Reserved 16 10 2 0 – Reserved

Production Signing

User Guide Intel Confidential 41

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Key Manifest ID 18 12 1 ID number of the Key Manifest. This is matched by the

verifier against the value stored in the platform in FPF.

This is typically used as an ODM ID – to enable an OEM

to assign IDs to its various ODMs and generate Key

Manifests specific to each ODM.

Reserved 19 13 1 Must be 0

Reserved 20 14 16 Must be 0

Key 0 Usage 36 24 16 Bitmap of usages; allows for 128 usages. Bits 0-31 are

allocated for Intel usages; bits 32-127 are allocated for

OEM usages

Bit 0-31: Reserved for Intel usage

Bit 32: Reserved

Bit 33: iUnit BootLoader Manifest

Bit 34: iUnit Main FW Manifest

Bit 35: cAVS Image #0 Manifest

Bit 36: cAVS Image #1 Manifest

Bit 37: Reserved

Bit 38: OS Boot Loader Manifest

Bit 39: OS Kernel manifest

Bit 40: Reserved

Bit 41: ISH manifest 1 (ISH Main)

Bit 42: ISH manifest 2 (ISH BUP)

Bit 43: OEM Debug Tokens Manifest

Bit 44: Reserved

Bit 45: Reserved

Bit 46: Reserved

Bit 47: OEM Key Attestation

Bit 48: OEM DAL Manifest

Bit 49 - 127: Reserved for future OEM usages

Key 0 Reserved 52 34 16

Key 0 Reserved 68 44 1

Key 0 Hash

Algorithm

69 45 1 2 = SHA256

Key 0 Hash Size 70 46 2 Size of Hash in bytes = N. N = 32

Key 0 Hash 72 48 N (32) The hash of the key.

…

9.5 Import Manifest

Use the MEU –import function to import the signed manifest back into the binary. The

signed manifest must be in a separate directory passed as an input parameter. If the
binary supports multiple manifests (e.g. a full SPI binary), and the folder has multiple
manifests, the command will be able to import them all back into the binary.

Production Signing

42 Intel Confidential User Guide

meu.exe -import <directory_containing_manifests> -f <input_binary.bin>

-o <output_binary.bin>

§

Common Bring Up Issues and Troubleshooting Table

User Guide Intel Confidential 43

10 Common Bring Up Issues and

Troubleshooting Table

10.1 Common Bring Up Issues and Troubleshooting
Table

Problem / Issue Solution / Workaround

Intel MEU tool fails to run Confirm that the MEU_Config and template xml files are

present in the same folder as the Intel MEU tool.

Confirm that both files have been modified properly.

§

	1 Introduction
	1.1 OEM Key Manifest (OEM KM)
	1.2 Goal
	1.3 Pre-Requisites
	1.4 Tools Used In This Document
	1.5 Terminology

	2 Intel® Manifest Extension Utility (Intel® MEU)
	2.1 Usage
	2.2 Examples
	2.2.1 Generate Configuration XML Template
	2.2.2 Generate Code partition XML
	2.2.3 Generate Compressed and Signed Partition

	3 OEM Component Signing High-Level
	3.1 OEM Key Manifest Creation
	3.2 Why the OEM KM is Important?
	3.3 Creation process of OEM KM

	4 Manifesting and Signing OEM Components in the IFWI Image
	4.1 Creating a Signed IFWI Image
	4.2 Opt-ing out of the OEM KM

	5 Creating PKI Key Pairs
	5.1 Introduction
	5.2 Generating Key Pair for Signing
	5.3 Creating the Public Key Hash:
	5.3.1 Creating a Public Key Hash Using Intel® MEU
	5.3.2 Creating Public Key Hash Manually

	5.4 Key Security

	6 Using Intel® MEU to Manifest & Sign
	6.1 Introduction
	6.2 Binary Manifesting Signing Overview
	6.3 Intel® MEU Configuration
	6.4 Intel® MEU Binlist
	6.4.1 Bin-list usage

	6.5 Intel® MEU Decomposition
	6.6 Intel® MEU Re-sign
	6.7 Different Binary Types Supported By Intel® MEU
	6.7.1 ISH FW
	6.7.2 IUnit / aDSP
	6.7.3 Secure Tokens (OEM Unlock Tokens)

	7 OEM Key Manifest
	7.1 Introduction
	7.2 Creation of Manifest

	8 Add Components to Intel® FIT
	8.1 Introduction
	8.2 Include each production signed binary
	8.3 Add the OEM Key Manifest
	8.4 Add the Public Key Hash for OEM Key Manifest
	8.5 Change the Key Manifest ID

	9 Production Signing
	9.1 Introduction
	9.2 Production signing high-level
	9.3 Export Manifests
	9.4 Manifest structures
	9.4.1 Manifest Header
	9.4.2 Signed Package Info Extension
	9.4.3 OEM Key Manifest

	9.5 Import Manifest

	10 Common Bring Up Issues and Troubleshooting Table
	10.1 Common Bring Up Issues and Troubleshooting Table

